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Abstract
In order to realize supersymmetric quantum mechanics methods on a four-
dimensional classical phase space, the complexified Clifford algebra of this
space is extended by deforming it with the Moyal star product in composing
the components of Clifford forms. Two isospectral matrix Hamiltonians
having a common bosonic part but different fermionic parts depending on
four real-valued phase-space functions are obtained. The Hamiltonians are
doubly intertwined via matrix-valued functions which are divisors of zero in
the resulting Moyal–Clifford algebra. Two illustrative examples corresponding
to Jaynes–Cummings-type models of quantum optics are presented as special
cases of the method. Their spectra, eigenspinors and Wigner functions as well
as their constants of motion are also obtained within the autonomous framework
of deformation quantization.

PACS numbers: 45.20.Jj, 11.30.Pb, 03.65.Fd

1. Introduction

The Moyal star-product formalism, more generally deformation quantization, provides useful
tools for describing the phase-space formulation of quantum mechanics [1, 2]. Spin and
relativistic quantum mechanics can also be considered in this framework by making use of
an additional fermionic star product [3]. It is seen that a combination of the Clifford product
as fermionic part and Moyal star product as bosonic part plays an important role in this
regard. This approach can also be adopted to realize the methods of supersymmetric quantum
mechanics [4–7] on a phase space. Henselder has already shown how such an approach can
be accomplished on a two-dimensional (2D) phase space in a recent study [8]. The main goal
of the present work is to show that such a programme can be realized on a 4D phase space in
its full generality and rich potential applicability.
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In this paper, we first study the deformation of the complex Clifford algebra defined
on a 4D phase space of a classical Hamiltonian system. The deformation is performed in
composing the components of Clifford forms with the Moyal star product. This enables us
to obtain two isospectral matrix Hamiltonians, each being a sum of factorized terms. The
Hamiltonians depend on four real-valued phase-space functions and they are general enough
for modelling various systems. Moreover, the Hamiltonians are also doubly intertwined in
such a way that the intertwining matrix-valued phase-space functions are divisors of zero in the
resulting deformed algebra. By composing the intertwining matrices with their conjugates, we
obtain a constant of motion for each system. The well-known Jaynes–Cummings-type models
of quantum optics [9–11], which are the main subject of recent experiments to understand
the quantum nature of atom–field interactions [12], emerge as special cases of our method.
These are studied in detail as illustrative examples. Their phase-space characteristics such as
their spectra, eigenspinors and related Wigner functions as well as their classical limits and
constants of motion are obtained in an autonomous way, without any reference to the standard
tools of quantum mechanics.

The paper is structured into two main parts. The first part consists of the following three
sections where our method is fully developed. In section 2, the Clifford algebra structure
of 4D classical phase space and its complexification are studied and the basics of the Moyal
star product are briefly reviewed. The deformation of the algebra and its application for
establishment of supersymmetry techniques on the phase space are taken up in section 3 and
its physical consequences are studied in section 4. Section 5, which constitutes the second
part of the study, is entirely devoted to the applications of the method in quantum optics.
Concluding remarks are given in the final section.

2. Clifford algebra on a phase space

Any vector space on which a non-degenerate inner product is defined has a Clifford algebra
structure. Tangent (or cotangent) space of any (pseudo) Riemannian manifold is the best place
where efficiency of Clifford calculus can be observed [13]. In this regard, the symplectic
manifold that we shall consider in this and the following section can be any even-dimensional
manifold. However, in order to be able to do quantization consistently in such a framework,
one needs the star product of deformation quantization (see subsection 2.3) which requires
globally defined coordinates. For this reason and for physically relevant applications, we shall
confine the investigation to 4D flat cases. Our method can easily be extended to an arbitrary
flat symplectic manifold. For definiteness, we take our phase space to be a 4D symplectic
manifold M topologically equivalent to R

4 and denote the linear space of complex-valued,
smooth (differentiable to all orders) functions defined on it by F . Real-valued elements of F
are the classical observables of Hamiltonian mechanics.

At each point of M two 4D vector spaces, the tangent space and (its dual) the cotangent
space are naturally defined. Elements of the latter are 1-forms acting linearly on the elements of
the former. M carries two distinguished structures defined by two non-degenerate, second rank
tensor fields: the symplectic 2-form � (which is also closed) and the Euclidean symmetric
metric tensor g. They are non-degenerate in the sense that each defines a vector space
isomorphism between the tangent and cotangent spaces. The elements associated with these
isomorphisms are called the symplectic and metric dual of each other. The metric dual of a
vector field x is a 1-form x̃ defined, for a given vector field y, as x̃(y) = iy(x̃) = g(x, y).
Here, iy denotes the so-called inner product whose action on an arbitrary k-form (a totally
anti-symmetric covariant tensor) β is defined, for arbitrary vector fields x1, . . . , xk−1, by
(iyβ)(x1, . . . , xk−1) = kβ(y, x1, . . . , xk−1). � and g at each point of a given neighbourhood
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endow the tangent space with the structures of a symplectic vector space and an inner product
space, respectively. According to the Darboux theorem [14], in each neighbourhood of M one
can define the canonical coordinates (q, p) = (q1, q2, p1, p2) which lead to � = ∑

j dqj ∧dpj.
Here ∧ denotes the bilinear and associative exterior product which satisfies

α ∧ β = (−1)jkβ ∧ α,

for the arbitrary j -form α and k-form β. � eventually leads to the Poisson bracket (PB)

[F,G]P =
2∑

k=1

(
∂qk

F ∂pk
G − ∂pk

F∂qk
G

)
(1)

of Hamiltonian mechanics. We henceforth use the abbreviation ∂qi
≡ ∂/∂qi and denote the

generic elements of F by capital Latin letters. On the right-hand side of (1), the following
ordinary commutative and associative pointwise product of functions is essential:

(F1F2)(q, p) = (F2F1)(q, p) = F1(q, p)F2(q, p) = F2(q, p)F1(q, p).

2.1. Clifford bundle and complexification

The linear space of all forms constitutes the exterior algebra with respect to the exterior
product, which (like the tensor algebra) is a Z-graded associative algebra. Although, unlike
the tensor algebra, the exterior algebra is finite dimensional (2nD when the dimension of M
is n), its Z-gradation is inherited from the tensor algebra. In particular, any k-form for k > n

is zero and the zero element of the exterior algebra is the only homogeneous element of every
degree greater than n (see also [13] pp 7–8).

The Clifford product ∗C , defined for a 1-form x̃ and an arbitrary form β by

x̃ ∗C β = x̃ ∧ β + ixβ, (2)

turns the exterior algebra into a Z2-graded associative algebra called the Clifford algebra
(also known as the geometric algebra [15, 16]; see also [17] for applications in Hamiltonian
mechanics). By associativity, the rule (2) suffices to completely determine ∗C on arbitrary
forms. Z2-gradation means that the whole algebra is, as a linear space, a direct sum of the
spaces of the odd and even forms such that the latter has a subalgebra structure. The Clifford
product of a j -form α and k-form β is, in general, an inhomogeneous form consisting of a
sum of �-forms such that � = j + k, j + k − 2, . . . , |j − k|. The exterior bundle (union of
exterior algebras) equipped with the ∗C product in the fibres is called the Clifford bundle. The
Clifford commutator, defined by

[α, β]C = α ∗C β − β ∗C α,

is bilinear, antisymmetric and satisfies the Jacobi identity. Each fibre of the Clifford bundle
acquires a Lie algebra structure with this bracket. In the context of Clifford algebra, we shall
mainly adopt the conventions of [13], except for the representation of the Clifford product.
More conventional versions of this product are x̃ ∗C β = x̃ ∨ β and juxtaposing the factors.

Tangent spaces can be complexified by replacing the field of real numbers R by the
field of complex numbers C. Then g can be extended by C-linearity to the complex-valued,
symmetric and non-degenerate (guaranteed by the non-degeneracy of g) bilinear map gC.
As C is algebraically closed, gC is not characterized by any signature (even if g had any
non-Euclidean signature) and hence the structure of complex algebra depends only on the
dimension. In our case, we consider the 24D real Clifford algebra C4,0(R) which is isomorphic
to the algebra of 2 × 2 quaternion matrices ([13], p 80). But from here on, we shall deal with
its complexification C4(C) which is known to be isomorphic to the algebra of 4 × 4 complex
matrices.
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2.2. The primary SUSY structure

The 24D complex algebra C4(C) is generated by 1 and by the complex orthonormal basis
{e1, e2, e3, e4} such that

ej ∗C ek + ek ∗C ej = 2δjk, (3)

where the Kronecker symbols denote the components of the (inverse) metric gC(ej , ek) = δjk .
We start out our analysis by the Clifford 1-form

ω = W1e
1 + W2e

2 + P1e
3 + P2e

4, (4)

whose components are real-valued phase-space functions:

Wj = Wj(q, p), Pj = Pj (q, p), j = 1, 2.

A rather general Hamiltonian function in two dimensions can now be written, in terms of ω,
as a Clifford product:

H = 1
2ω ∗C ω = 1

2

(
P 2

1 + P 2
2

)
+ 1

2

(
W1

2 + W2
2
)
. (5)

We next introduce the 1-forms

f = 1√
2
(e1 + ie3), f̌ = 1√

2
(e1 − ie3),

g = 1√
2
(e2 + ie4), ǧ = 1√

2
(e2 − ie4).

These are all nilpotent of order 2:

f ∗C f = 0 = g ∗C g, f̌ ∗C f̌ = 0 = ǧ ∗C ǧ, (6)

and satisfy

{f, f̌ }C = 2 = {g, ǧ}C, {g, f̌ }C = 0 = {ǧ, f }C, {g, f }C = 0 = {ǧ, f̌ }C, (7)

where {, }C denotes the Clifford anti-commutator. Relations (6) and (7) imply that the set
{2−1/2f, 2−1/2g, 2−1/2f̌ , 2−1/2ǧ} constitutes a Witt basis of the complexified cotangent space.
The first two and the last two elements of this basis span two isotropic subspaces (where gC

induces the zero bilinear map) whose direct sum is the whole cotangent space. Then in terms
of the complex-valued functions

C1 = 1√
2
(W1 + iP1), C2 = 1√

2
(W2 + iP2) (8)

and their complex conjugates C̄1, C̄2, we define

q− = C̄1f + C̄2g, q+ = C1f̌ + C2ǧ (9)

such that (4) can be rewritten as ω = q+ + q−. By using (6) and (7), one can easily verify
that q± are also nilpotent, and together with H, they close in a simple supersymmetric algebra
structure

q± ∗C q± = 0, H = 1
2 {q−, q+}C, [q±,H ]C = 0. (10)

The Clifford algebra structure of the exterior bundle of M enabled us to see the
supersymmetry (SUSY) structure in the corresponding classical system. Such systems
possessing the fermionic (anti-commuting elements) degrees of freedom, in addition to the
usual bosonic ones, are known as pseudoclassical models (see [6] for an extensive list of
references). They serve as the classical limits of quantum systems having both kinds of
degrees of freedom. However, the SUSY structure emerging above does not seem to be
promising much at this stage, since the third relation of (10) is trivially satisfied. Indeed, H
is a 0-form and therefore Clifford commutes with all forms. In general, the third relation of
(10) must be a consequence of the nilpotent nature of so-called supercharges q±. In what
follows, the algebra will be deformed in such a way that the last three relations with a new
Hamiltonian, which turns out to be an inhomogeneous even Clifford form comprising a 0-form
and a 2-form, will manifest a genuine SUSY structure. For this purpose, the basics of a Moyal
star product and its corresponding bracket are briefly reviewed in the following subsection.
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2.3. Star product and Moyal bracket

In the canonical (q, p) coordinates, the Moyal ∗-product on F is defined by

∗ = exp

⎡
⎣1

2
ih̄

2∑
j=1

(
←
∂ qj

→
∂ pj

− ←
∂ pj

→
∂ qj

)

⎤
⎦ , (11)

where h̄ is the Planck constant and
←
∂ and

→
∂ are acting, respectively, on the left and on the

right. This product is bilinear, associative and obeys the relation

(F1 ∗ F2) = F̄2 ∗ F̄1 (12)

under complex conjugation. In terms of the ∗-product the Moyal bracket (MB) [, ]M is defined
as

[F,G]M = F ∗ G − G ∗ F (13)

for all phase-space functions. Note that in view of (12), we have

[F,G]M = −[F̄ , Ḡ]M. (14)

In particular, the Moyal bracket of two real-valued functions is a purely imaginary-valued
function. The most important properties of the ∗-product and the MB are the following
limiting relations:

lim
h̄→0

F ∗ G = FG, lim
h̄→0

1

ih̄
[F,G]M = [F,G]P ,

which hold for generic h̄-independent phase-space functions. These reveal the fact that the
associative ∗-algebra and the Lie algebra structure of F given by the MB are, respectively,
deformations (in the sense of Gerstanhaber [18]) of the associative algebra structure of F with
respect to the pointwise product and of the Lie algebra structure determined with respect to the
PB. All quantum effects are encoded in the ∗-product with respect to which the real elements
of F are promoted to the status of quantum observables.

3. Moyal–Clifford algebra

So far the components of Clifford forms were commuting quantities since they were multiplied
by the ordinary pointwise product. However, one can go over to the non-commutative or
quantum case by demanding that the coefficients are to be multiplied by the Moyal ∗-product.
This can be achieved by combining (2) and (11). The resulting associative product and
algebra will be referred to as the Moyal–Clifford (MC) product, denoted by ∗MC and as the
MC-algebra, respectively. We will directly apply this product to the above formulation. In
doing so, we would like the first relation of (10) to remain intact with respect to this new
product as well.

3.1. SUSY structure by deformation

It is easy to show that

q+ ∗MC q+ = [C1, C2]Mf̌ ∗C ǧ,

q− ∗MC q− = [C̄1, C̄2]Mf ∗C g = −[C1, C2]Mf ∗C g,

where in the last equality we have used (14). Thus q+ and q− are nilpotent with respect to the
MC-product if and only if

[C1, C2]M = 0. (15)

5
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In terms of Wj and Pj, this condition amounts to

[W1,W2]M − [P1, P2]M = i[W2, P1]M − i[W1, P2]M. (16)

Since Wj and Pj are real valued, the left-hand side of (16) is, in view of (14), purely imaginary,
while the right-hand side is real. So condition (16) is, in fact, equivalent to the following two
conditions:

[W1,W2]M = [P1, P2]M, (17)

[W1, P2]M = [W2, P1]M. (18)

We now define the SUSY Hamiltonian as

Hs = 1
2 {q+, q−}MC, (19)

which implies that

[q±,Hs]MC = 0. (20)

In terms of ω1 = ω and ω2 = −i(q+ − q−) which obey {ω1, ω2}MC = 0, Hs can be factorized
as

Hs = 1
2ω1 ∗MC ω1 = 1

2ω2 ∗MC ω2. (21)

As will be shown in the following subsection, in an appropriate matrix representation of the
Clifford algebra, ωj are Hermitian supercharges and the symmetry determined by the above
super-algebra is 2-extended supersymmetry denoted also by N = 2 SUSY (where N stands
for the number of Hermitian supercharges).

Using (9), (19), conditions (17), (18) and

[C̄1, C1]M = i[W1, P1]M, [C̄2, C2]M = i[W2, P2]M,

[C̄1, C2]M = [W1,W2]M − i[W2, P1]M,

[C̄2, C1]M = −[W1,W2]M − i[W2, P1]M,

Hs can explicitly be evaluated as

Hs = H∗ + 1
2 {[W1, P1]Me13 + [W2, P2]Me24 + [W2, P1]M(e14 + e23) + [W1,W2]M(e12 + e34)},

(22)

where H∗ should be read as H∗1 with 1 being the unit element of the Clifford algebra and

2H∗ = {C̄1, C1}M + {C̄2, C2}M
= P1 ∗ P1 + P2 ∗ P2 + W1 ∗ W1 + W2 ∗ W2. (23)

Here {, }M stands for the anti-Moyal bracket and we have adopted the abbreviation ejk =
ej ∗C ek which for the product of different orthonormal basis elements becomes e12 = e1 ∧ e2,
etc. Note that Hs is an inhomogeneous even Clifford form whose bosonic part H∗ is a zero-
form and the remaining fermionic part is a 2-form. The existence of all possible 2-form basis
elements in the fermionic part is a reflection of its generality.

3.2. Matrix realization

In terms of the 2 × 2 Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

6
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and of the 2 × 2 unit matrix 1, we shall use

e1 =
(

0 iσ1

−iσ1 0

)
, e2 =

(
0 iσ3

−iσ3 0

)
,

e3 =
(

0 iσ2

−iσ2 0

)
, e4 =

(
0 1
1 0

)
,

(24)

for the complex Clifford basis defined by (3). This is a representation such that all basis
matrices are Hermitian, while e3 and e4 are symmetric and e1 and e2 are antisymmetric. If the
representations (24) are used in (22), we obtain

Hs =
(

H1 0
0 H2

)
= H1π+ + H2π−, (25)

where π+ = diag(1, 0) and π− = diag(0, 1) denote the non-primitive projections and

H1 = H∗1 + H1F , H2 = H∗1 + H2F . (26)

The HjF represent the following fermionic parts:

H1F = i

2
B+σ3, (27)

H2F = i

2
B−σ3 − i[W2, P1]Mσ1 − i[W1,W2]Mσ2, (28)

with

B± = [W1, P1]M ± [W2, P2]M.

In deriving these relations we made use of σ1σ2σ3 = i1 and its consequences. Note that H1 is
diagonal.

Having obtained matrix realizations of the Hamiltonians we should emphasize that both
H1 and H2 are Hermitian. Firstly, in view of (14) H∗ given by (23) is a real-valued phase-space
function. Secondly, as B± and the other two coefficient functions of H2F consisting Moyal
brackets are purely imaginary valued, the presence of the imaginary unit i in (27) and (28)
ensures the Hermiticity of the both fermionic parts.

Equations (15) (or equivalently (17) and (18)), (20) and (22) show the main differences
between the Clifford algebra and the Moyal–Clifford algebra. These restrictions given by (15)
arise in order to make q± nilpotent in the deformed case and play important roles in the rest
of this work. The resulting algebra is a genuine SUSY algebra and the resulting Hamiltonians
have non-classical parts. The common bosonic part H∗ of H1 and H2 has H given by (5) as
its classical limit: limh̄→0 H∗ = H . However, their fermionic parts are different and have
no classical limits despite the fact that the coefficient functions of the Pauli matrices have
classical limits: all Moyal brackets in (27) and (28) reduce to PB brackets in the classical limit
after dividing by ih̄.

4. Intertwining, isospectral property and constants of motion

In terms of

L1 = C1(iσ1 + σ2) − iC2(1 − σ3) = 2i

(
0 0
C1 −C2

)
, (29)

L2 = C1(iσ1 + σ2) + iC2(1 + σ3) = 2i

(
C2 0
C1 0

)
, (30)

7
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the matrix representations of the supercharges q± are found, from (9) and (24), to be

q+ = 1√
2

(
0 L1

−L2 0

)
= q

†
−. (31)

The matrices of ω1 and ω2 are Hermitian. Nilpotency of q+ implies that

L1 ∗MC L2 = 0 = L2 ∗MC L1, (32)

i.e. L1 and L2 are divisors of zero with respect to the ∗MC-product, which denotes, from now
on, the star product of matrix-valued phase-space functions. We should note that the second
equality of (32) results from the matrix product of factors iσ1 + σ2 and (1 ± σ3) appearing in
(29) and (30), while condition (15) is essential for the first equality of (32).

On the other hand, (20) implies the following double intertwining relations:

L2 ∗MC H1 = H2 ∗MC L2, (33)

L1 ∗MC H2 = H1 ∗MC L1. (34)

One can easily verify that (D1 ∗MC D2)
† = D

†
2 ∗MC D

†
1 holds for arbitrary matrix-valued

functions Dj’s. In view of this fact, the Hermitian conjugates of (33) and (34), or equivalently
the relation [q−,Hs]MC = 0, gives the following additional intertwining relations:

L
†
2 ∗MC H2 = H1 ∗MC L

†
2, (35)

L
†
1 ∗MC H1 = H2 ∗MC L

†
1. (36)

As is evident from (32), L
†
1 and L

†
2 are also divisors of zero. By virtue of (19) and (31), we

also obtain

H1 = 1
4

(
L1 ∗MC L

†
1 + L

†
2 ∗MC L2

)
, (37)

H2 = 1
4

(
L

†
1 ∗MC L1 + L2 ∗MC L

†
2

)
, (38)

which show that each partner Hamiltonian can be written as a sum of factorized terms.
Let us call a nonzero 2 × 1 matrix-valued function � a star-eigenspinor of a 2 × 2 matrix-

valued function T corresponding to the star-eigenvalue λ if and only if T ∗MC � = λ�. This
definition implies that �† ∗MC T † = λ̄�†, and that � is nonzero if and only if �† ∗MC � 	= 0.
Then the standard theorems for Hermitian operators, in particular the theorems concerning
the reality of spectra and the orthogonality of eigenfunctions corresponding to different
eigenvalues, are also valid in the present context. We use the term spinor in the usual
sense of the 2 × 1 matrix eigenfunction and remark that this term has a wider meaning in
the nomenclature of the Clifford algebra. Bearing these facts in mind, we now return to the
physical implications of the intertwining relations [7].

The first important implication is the fact that H1 and H2 are isospectral, that is, they have
almost the same spectra. More concretely, if � is an eigenspinor of H1 with eigenvalue λ,
then L2 ∗MC � and L

†
1 ∗MC � are also eigenspinors of H2 with the same eigenvalue provided

that � is not in the MC-kernel of L2, or L
†
1. In view of (34) and (35) the analogous remark is

valid for the eigenspinors of H2. For brevity, we refer to the following section for more details
and return to another implication of the intertwining relations.

Multiplying one of relations (33)–(36) by Lj (or L
†
j ) from the left, and comparing the

resulting expression with a similarly obtained one from the others, leads to the following
matrix-valued functions:

8
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R1 = L1 ∗MC L
†
1, S2 = L

†
2 ∗MC L2, (39)

R2 = L2 ∗MC L
†
2, S1 = L

†
1 ∗MC L1. (40)

These commute with H1 and H2 in the following way:

[R1,H1]MC = 0 = [S2,H1]MC, (41)

[R2,H2]MC = 0 = [S1,H2]MC. (42)

However, they are not independent since 4H1 = R1 + S2 and 4H2 = R2 + S1. That is, if there
is no explicit time dependence, each system has, together with the Hamiltonian, two constants
of motion. The explicit forms of the constants of motion for H1 are S2 = 2H1(1 + σ3) and
R1 = 2H1(1 − σ3). Since H1 is diagonal, S2 and R1 are its projected forms.

The method developed so far contains four real-valued phase-space functions. Apart
from conditions (17) and (18), there is no constraint on these functions. Therefore, the
∗-products of functions appearing in our formulae contain, in general, countably infinite terms
each characterized by a positive power of h̄. This generality enables us to study the quantum
properties of many physically relevant systems on a classical phase space. However, as we are
about to do in the following section, for physically relevant systems some of these functions
should be restricted to finite polynomial functions of the canonical coordinates. In such a case,
a comparison with the existing literature of supersymmetric quantum mechanics, in which the
majority of applications have been carried out in the usual operator formulation of quantum
mechanics, can be made. In this regard it is interesting to observe that the forms of our Hs,H1

and supercharges are similar, up to some permutations of rows and columns of matrices, to
that found in [19].

5. Applications

In terms of spin raising and lowering matrices σ± = (σ1 ± iσ2)/2, H2F given by (28) can be
rewritten as

H2F = i

2
B−σ3 +

√
2(Aσ+ + Āσ−), (43)

where

A = [W2, C̄1]M, Ā = −[W2, C1]M. (44)

These are the phase-space analogues of the bosonic raising and lowering operators when
[A, Ā]M is a (real) constant. To give illustrative examples we shall (from here on) restrict the
study to such cases, take h̄ = 1 and denote the second term of (43) as

HJC(A) =
√

2(Aσ+ + Āσ−), (45)

when [A, Ā]M = 1. In such a case, HJC is the phase-space analogue of the well-known, fully
quantum mechanical Jaynes–Cummings (JC) Hamiltonian of quantum optics which describes
a bipartite (a two-level atom and a field) system. In the parlance of quantum optics, σ± are
known as the atomic transition operators and σ3 as the inversion operator. The first Aσ+ term
on the right-hand side of (45) represents an absorption process in which destruction of a field
quanta and a transition to a higher atomic level take place. The second term Āσ− describes
an emission process in which creation of a field quantum is accompanied by a transition to a
lower atomic level.

Let us see how the phase-space version of such a model together with its supersymmetric
partner naturally emerges from the method developed above.

9
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5.1. Example 1: Jaynes–Cummings-type systems

A particular simple choice of Wj and P1 amenable to various physical applications seems to
be as

W1 = p2, P1 = q2, W2 = q1p2 − q2p1. (46)

Then, in view of [W1,W2]M = ip1 and [W2, P1]M = −iq1, conditions (17) and (18) imply
that the most general form of P2 is

P2 = p1p2 + q1q2 + K1, (47)

such that K1 = K1(q1, p1). It is now straightforward to verify, with C1 = (p2 + iq2)/
√

2 from
(44), that

A = − 1√
2
(q1 + ip1), [A, Ā]M = 1. (48)

Hence, A and Ā are bosonic lowering (annihilation) and raising (creation) phase-space
functions, respectively. One can also define another such bosonic pair by

B = − 1√
2
(q2 + ip2), [B, B̄]M = 1, (49)

which Moyal commute with the above pair. W 2 represents the angular momentum
perpendicular to the q1q2-plane and, together with P2, can be rewritten as

W2 = −i(ĀB − AB̄), P2 = AB̄ + ĀB + K1, (50)

Let us define the phase-space number functions

NA = Ā ∗ A = ĀA − 1
2 , NB = B̄ ∗ B = B̄B − 1

2 . (51)

By making use of

F1(q) ∗ F2(q) = F1(q)F2(q), G1(p) ∗ G2(p) = G1(p)G2(p),

and G ∗M G = G2 for G = a · p + F1(q), we also find

H2F = i

2
B−σ3 + HJC(A),

B± = i[−1 ± 2(NB − NA + X1)],

H∗ = HA + 2NB(NA + 1) + Y1,

(52)

where HA = (2NA + 1)/2, and

X1 = − i

2
[W2,K1]M, (53)

Y1 = 1

2
{AB̄ + ĀB,K1}M +

1

2
K1 ∗ K1. (54)

H2 is of the type of a JC Hamiltonian [9–11] describing a two-level atom interacting with a
quantized, two-mode electromagnetic field of which only the A-mode directly interacts with
the atom and hence causing transitions between levels. HA in H∗ is the energy of the A-mode
and the remaining part

Hint = H∗ − HA = 2NB(NA + 1) + Y1,

represents the energy of the other mode as well as the interaction between the modes. The
super-partners are

H1 = (Hint + HA)1 + (HA − NB)σ3, (55)

10
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H2 = (Hint + HA)1 + (HB − NA)σ3 + HJC(A), (56)

where HB = (2NB + 1)/2, we have taken K1 = 0 and hence Hint = 2NB(NA + 1). In such a
case the interactions between the modes are through the number functions. By choosing K1,

such that X1 and Y1 are nonzero, one can also model certain types of mode interactions [20].
Even in the simplest case when K1 is a nonzero constant, X1 is zero but the Y1 term, which
becomes K1(AB̄ + ĀB) +

(
K2

1

/
2
)
, represents a coherent exchange of photons between the

modes. In any case H1 has no JC-type atom–field interaction term.

5.2. Eigenvalues, eigenspinors and Wigner functions

H1 is diagonal and algebraically depends on the complete set {NA1, NB1, σ3} of three mutually
commuting (in the MC sense) matrix-valued phase-space functions. Using the shortened
notation (z| · · ·) = (q, p| · · ·), their common eigenspinors will be denoted by

(z|j, nA, nB) = |j 〉 ⊗ (z|nA, nB), (57)

Here nA, nB = 0, 1, 2, . . ., stand for the numbers of mode-quanta and j (= 1, 2) labels the
bare states of atom such that |j 〉, like the spin-up and spin-down states of a spin-1/2 system,
satisfy σ3|1〉 = −|1〉, σ3|2〉 = |2〉 and

σ−|1〉 = 0 = σ+|2〉, σ−|2〉 = |1〉, σ+|1〉 = |2〉.
In (57) the real-valued functions (z|nA, nB) represent the diagonal Wigner functions [21, 22]

(z|nA, nB) = 1

nA!nB!
ĀnA ∗M B̄nB ∗M (z|0, 0) ∗M AnA ∗M BnB , (58)

for the two-mode field. Here (z|0, 0) denotes the vacuum Wigner function defined by

A ∗M 〈z|0, 0〉 = 0 = B ∗M 〈z|0, 0〉.
The normalized (its integral all over the phase space set to 1) solution of these equations is
π−2 exp −(

p2
1 + p2

1 + q2
1 + q2

1

)
. Explicit functional forms of the higher level Wigner functions

are proportional to [23]

LnA(4AĀ)LnB (4BB̄)〈z|0, 0〉,
where Lk stands for the Laguerre polynomials. These are products of the harmonic oscillator
Wigner functions which are well known [24].

One can also verify

A ∗M (z|nA, nB) = √
nA (z|nA − 1, nB),

Ā ∗M (z|nA, nB) =
√

nA + 1 (z|nA + 1, nB),

NA ∗M (z|nA, nB) = nA (z|nA, nB).

(59)

Similar relations hold for NB,B and B̄. In view of these relations, the eigenvalues of H1

H1 ∗MC (z|1, nA, nB) = λ1nAnB (z|1, nA, nB),

H1 ∗MC (z|2, nA, nB) = λ2nAnB (z|1, nA, nB),

are easily found, from (55) and (59), to be

λ1nAnB = nB(2nA + 3), λ2nAnB = (nB + 1)(2nA + 1). (60)

For nA = 0 = nB, we have λ100 = 0 and λ200 = 1, which represent the bare energy levels of
the atom. In this case, H1 is simply (1 + σ3)/2. The level λ1nA0 = 0 is infinitely degenerate
whereas all the other levels are finitely degenerate. Provided that nA � nB, the level λ2nAnB is

11



J. Phys. A: Math. Theor. 42 (2009) 385301 İ Buğdaycı and A Verçin

the higher level of the whole atom–field system. These degeneracies arise from the fact that
we have taken the frequencies of the modes to be equal (degenerate modes). Evidently, these
discussions can be extended to a general case in which the frequencies are different.

For this example, we have C2 = i
√

2B̄A, C1 = −iB̄ and by virtue of

2σ+σ− = 1 + σ3, 2σ−σ+ = 1 − σ3, (61)

the intertwining (matrix-valued) functions, given by (29) and (30), can be rewritten as

L1 = 2B̄σ−(1 +
√

2Aσ+), L
†
1 = 2B(1 +

√
2Āσ−)σ+, (62)

L2 = 2B̄(1 −
√

2Aσ+)σ−, L
†
2 = 2Bσ+(1 −

√
2Āσ−). (63)

Now it is easy to verify that

L2 ∗MC (z|1, nA, nB) = 0 = L
†
1 ∗MC (z|2, nA, nB),

which simply follow from the actions of σ± on the atomic bare states. However, one needs to
be more careful for the verifications of

L
†
1 ∗MC (z|1, nA, nB) = 2

√
nB nAnB (z),

L2 ∗MC (z|2, nA, nB) = 2
√

nB + 1 �nAnB (z),

where

nAnB (z) =
√

2nB + 2(z|1, nA + 1, nB − 1) + (z|2, nA, nB − 1), (64)

�nAnB (z) = (z|1, nA, nB + 1) −
√

2nA(z|2, nA − 1, nB + 1). (65)

As a consistency check, one can directly verify that these are the (unnormalized) eigenspinors
of H2:

H2 ∗MC nAnB (z) = λ1nAnBnAnB (z), (66)

H2 ∗MC �nAnB (z) = λ2nAnB�nAnB (z), (67)

with the same eigenvalues as given by (60). These fully establish the iso-spectral property of
H1 and H2, which was compactly expressed by the SUSY algebra given by (19)–(21).

In the nomenclature of quantum optics the ∗-eigenstates given by (64) and (65) are the
phase-space analogues of the so-called stationary dressed states or the JC-doublet. The states
on the right-hand sides of (64) and (65) are known as the bare states of the atom–field system.
The latter are the phase-space version of the product states of the bare atom and field states.
Finally, we compute, with the help of (62) and (63), the constants of motion

R1 = 8NB(HA + 1)σ−σ+, (68)

S1 = 4(NB + 1)[σ+σ− + 2NBσ−σ+ + HJC(A)], (69)

such that [R1,H1]MC = 0 = [S1,H2]MC .

5.3. Example 2: non-resonant JC-type interactions

For W1 = p1, P1 = −q1 and W 2 as in (46), conditions (17) and (18) are satisfied, provided
that

P2 = p1p2 + q1q2 + K2.

12
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Here K2 = K2(q2, p2) is an arbitrary real function of its arguments. Hence
√

2C1 = p1 − iq1

and

[W2, C̄1]M = −(q2 − ip2)/
√

2 = B̄,

where B and B̄ are defined by (49). As a result, by interchanging the lowering functions of
subsection 5.1 such that (A,B) ↔ (B̄, Ā), or by direct computation, we find

H2F = i

2
B−σ3 + HJC(B̄),

HJC(B̄) =
√

2(B̄σ+ + Bσ−),

B± = i[1 ± 2(NB − NA + X2)],

H∗ = HB + 2NA(NB + 1) + Y2.

W 2 and the first term of P2 are still given by (50), and X2, Y2 are defined as in (53) and (54)
provided that K1 is replaced by K2. For K2 = 0, the Hamiltonians and the corresponding
eigenvalues are

H1 = (Hint + HB)1 − (HB − NA)σ3,

H2 = (Hint + HA)1 − (HA − NB)σ3 + HJC(B̄),

λ1nAnB = (nA + 1)(2nB + 1), λ2nAnB = nB(2nB + 1).

These are related to (60) by the interchange (1, nA, nB) ↔ (2, nB, nA).
Now some remarks for the above applications are in order.
The JC-type Hamiltonians originate from the interaction of the electric dipole moment

of an atom with a quantized light in dipole approximation and, in general, both HJC(A) and
HJC(Ā) take part in such an interaction. To see this we should emphasize that dipole moment
has non-vanishing matrix elements only between states of opposite parity. Therefore, the
atomic bare states |1〉 and |2〉 are assumed of opposite parity and hence the dipole moment is
proportional to σ+ + σ− = |1〉〈2| + |2〉〈1|. On the other hand, since a quantized single mode
cavity field is a multiple of A + Ā, then the dipole energy is proportional to

(σ+ + σ−)(A + Ā) = HJC(A) + HJC(Ā).

However, the resonant processes described by HJC(A) are more efficient than the non-resonant
processes described by HJC(Ā), especially in the case of a quantized single-mode light.
Neglect of the latter is usually called the rotating wave approximation. On the other hand, in
the case of multi-mode interactions, both types of terms have important physical implications.
Here we will be content with pointing out that the above two examples can be combined and
then extended in various ways to study the generalized models of quantum optics, such as
N-atom JC models [25] (also known as Dick models [26]) and spin–boson systems [27]. In
particular, time can be included and the dynamics of transitions between atomic levels for both
partner Hamiltonians can be studied in the phase space.

6. Concluding remarks

The Moyal–Clifford algebra, that is, a Clifford algebra endowed with the star product of
deformation quantization, provides a unified framework to realize the SUSY techniques in a
classical phase space to see relations of various models described by matrix Hamiltonians and
to study their phase-space characteristics in great detail. To emphasize some merits of such
an approach we recall that in the usual operator formulation of quantum mechanics, Wigner
functions are indirectly obtained from wave functions through some convolution integrals
which, apart from simple few cases, are not easy to cope with. But in the deformation
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quantization they are directly obtained from star-eigenvalue equations. Moreover, by realizing
the SUSY techniques in this framework Wigner functions of some delicate states such as the
dressed states can be easily obtained by the intertwining functions.

In the presented examples the phase space is spanned, instead of the usual canonically
conjugate coordinates of a particle system, by the conjugate amplitudes of mode functions of a
quantized electromagnetic field that are dynamically equivalent to conjugate coordinates of a
mechanical oscillator. The form of H1 and H2 and the presented examples may be sufficiently
convincing that a lot of physically relevant (charged or uncharged) particle systems can be
identified as spacial cases. An exhaustive search in this direction seems to be rather involved
and will be deferred to a later publication.
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